

Behavioural Network Traffic Analytics for Securing 5G Networks

Stavros Papadopoulos, Anastasios Drosou, and Dimitrios Tzovaras

5th International Workshop on 5G Architecture (5GARCH)

Presenter: Dr. Stavros Papadopoulos Post-doctoral research associate at the Centre for Research and Technology Hellas / Information Technologies Institute

- Problem formulation
- Proposed method
- Experimental results
- Conclusions

- Problem formulation
- Proposed method
- Experimental results
- Conclusions

Problem formulation (1/2)

- Securing Mobile networks Malware detection:
 - Spam/Premium SMS/Call, DDoS SMS-flooding, DDoS by sending periodically Internet packets
- Diversity of the malware types and behaviours
 - Renders the problem of anomaly detection as a very challenging one
- Multi-dimensional nature of the data makes it difficult to analyse
 - SMS, Call, Internet, Services, Signalling
- More **challenging in 5G networks**, since one more dimension is added to the traffic, representing different network slices
 - Activity that is normal in one slice can be anomalous in another

Problem formulation (2/2)

- **Data types** in the mobile network:
 - Signalling (control) plane: all the signals that control or are needed for the network services (e.g. Call Forwarding enable/disable or Call handover)
 - Billing (data) plane: comprised of actual data sent/received by the mobile devices, including Call Detail Records (CDR), and Internet traffic
- Focus on the detection of malware on the **billing plane**:
 - No content used due to privacy concerns
 - Only high level communication events (who communicates with who and how/when)

- Problem formulation
- Proposed method
- Experimental results
- Conclusions

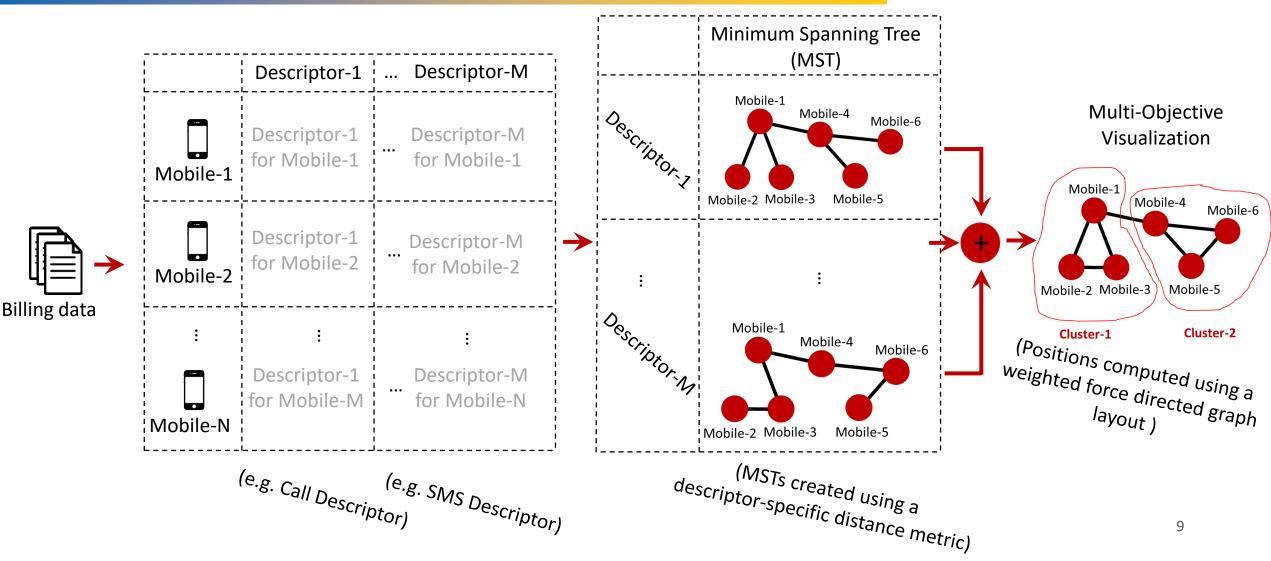
Background 1/2

Behavioural-based approaches

 Extract descriptors that capture different aspects of the behaviour of malicious and normal actors, allowing for their efficient discrimination

Behaviour: Range of actions taken by actors in conjunction with themselves and their environment.

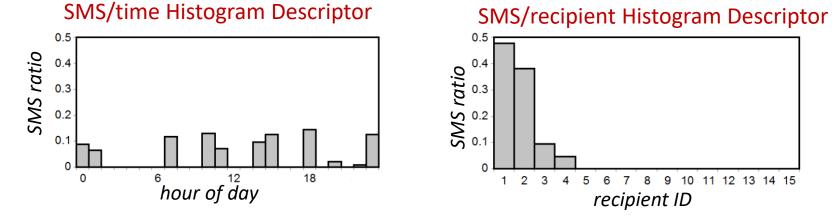
In the context of mobile networks, the actors are the mobile devices, environment is the rest of the mobile devices and network, and actions are the communications among them.



Background 2/2

- This paper proposes the **Behavioral Traffic Analysis** method, for discriminating between different user behaviors
- The method is an extension of the Multi-objective Clustering approach [Kalamaras et al. 2015] by extending the proposed behavioral descriptors

Multi-objective Clustering framework 1/2


Multi-objective Clustering framework 2/2

- Inputs of Multi-objective Clustering framework
 - Descriptor definitions
 - Distance metric between descriptors
- Example of Multi-objective Clustering approach [Kalamaras et al. 2015]

7

8 9 10 11 12 13 14 15

Proposed Descriptors for both SMS and Call activities

**these descriptors are also* defined for the call activity of each device (i.e. 4 descriptors in total)

Distance metric between descriptors: L1

Proposed Descriptors

- k-partite graphs created by a subset of billing attributes
- Each attribute value is mapped into a single graph node
- Continuous attributes (e.g. date-time, duration) are discretized

Origin	Dest	Slice	Туре			
m1	m4	s1	SMS			
m1	m4	m4 s1 SMS				
m1	m2	s1	CALL			
m1	m3	s2	CALL			
m1	m2	s2	CALL			
m2	m3	s1	CALL			
m2	m3	s1	SMS			
m2	m3	s1	CALL			
m2	m1	s1	SMS			
	Billing	data				

Example of descriptors:						
1.	CALL descriptor:					
	Origin/Dest/Slice					
	for CALL activity \rightarrow					
2.	SMS descriptor:					
	Origin/Dest/Slice					
	for SMS activity					
	1.					

Origin	Dest	Slice	Туре	
m1	m2	s1	CALL	
m1	m3	s2	CALL	_
m1	m2	s2	CALL	
•	data u descri j			

CALL descriptor of m1

Proposed Descriptors

Origin

- k-partite graphs created by a subset of billing attributes
- Each attribute value is mapped into a single graph node
- Continuous attributes (e.g. date-time, duration) are discretized

Origin	Dest	Slice	Туре
m1	m4	s1	SMS
m1	m4	s1	SMS
m1	m2	s1	CALL
m1	m3	s2	CALL
m1	m2	s2	CALL
m2	m3	s1	CALL
m2	m3	s1	SMS
m2	m3	s1	CALL
m2	m1	s1	SMS
	Billing	data	

						Call Destination
MS						m2 Slice
MS	Example of descriptors:	Origin	Dest	Slice	Туре	1 1
ALL	1. CALL descriptor: Origin/Dest/Slice	m1	m2	s1	CALL	m1 1 (s1)
ALL	\rightarrow for CALL activity \rightarrow	m1	m3	s2	CALL	\rightarrow
ALL	2. SMS descriptor:	m1	m2	s2	CALL	
ALL	Origin/Dest/Slice for SMS activity	•		sed for		
MS	TOT SIVIS activity	CALL	descri	ptor of	m1	
ALL						CALL descriptor of m1

Proposed Descriptors

Origin

- k-partite graphs created by a subset of billing attributes
- Each attribute value is mapped into a single graph node
- Continuous attributes (e.g. date-time, duration) are discretized

Origin	Dest	Slice	Туре			
m1	m4	s1	SMS			
m1	m4	m4 s1 SN				
m1	m2	s1	CALL			
m1	m3	s2	CALL			
m1	m2	s2	CALL			
m2	m3	s1	CALL			
m2	m3	s1	SMS			
m2	m3	s1	CALL			
m2	m1	s1	SMS			
	Billing	data				

/pe								Call Dest
MS							m2	Slice
MS Examp	le of descriptors:	Origin	Dest	Slice	Туре		1	1
ALL 1. CA	LL descriptor:	m1	m2	s1	CALL		m1 1	
	gin/Dest/Slice CALL activity	m1	m3	s2	CALL	\rightarrow		
ALL 2. SM	S descriptor:	m1	m2	s2	CALL		1	
	gin/Dest/Slice SMS activity	•	g data u descri				m3	1
	,	CALL	ucsen				CALL descriptor	of m1
ALL								

Proposed Descriptors

Origin

- k-partite graphs created by a subset of billing attributes
- Each attribute value is mapped into a single graph node
- Continuous attributes (e.g. date-time, duration) are discretized

Origin	Dest	Slice	Туре			
m1	m4	s1	SMS			
m1	m4	m4 s1 SMS				
m1	m2	s1	CALL			
m1	m3	s2	CALL			
m1	m2	s2	CALL			
m2	m3	s1	CALL			
m2	m3	s1	SMS			
m2	m3	s1	CALL			
m2	m1	s1	SMS			
	Billing	data				

m2
Example of descriptors: Origin Dest Slice Type
1. CALL descriptor: m1 m2 s1 CALL m1 1
 → for CALL activity → ^{m1} ^{m3} ^{s2} ^{cALL} →
2. SMS descriptor: m1 m2 s2 CALL 1
Origin/Dest/Slice Billing data used for the
for SMS activity CALL descriptor of m1
CALL descr

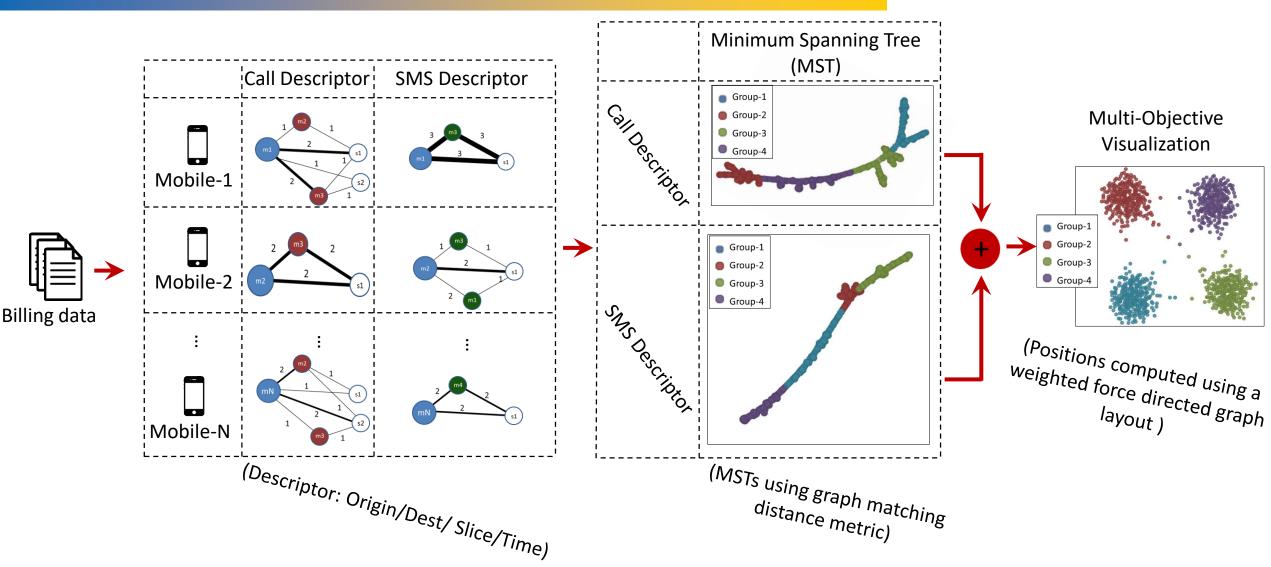
Proposed Descriptors

- k-partite graphs created by a subset of billing attributes
- Each attribute value is mapped into a single graph node
- Continuous attributes (e.g. date-time, duration) are discretized

Origin	Dest	Slice	Туре
m1	m4	s1	SMS
m1	m4	s1	SMS
m1	m2	s1	CALL
m1	m3	s2	CALL
m1	m2	s2	CALL
m2	m3	s1	CALL
m2	m3	s1	SMS
m2	m3	s1	CALL
m2	m1	s1	SMS
	Billing	data	

Example of descriptors 1. CALL descriptor:	5:	Origin	Dest	Slice	Туре
 Origin/Dest/Slice for CALL activity 	\rightarrow	m1	m4	s1	SMS
2. SMS descriptor:		m1	m4	s1	SMS
Origin/Dest/Slice for SMS activity				used fo ptor of	

Distance metric

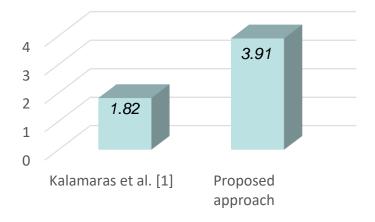

- Distance metric defined using graph matching techniques
- For mobile—*i* and mobile—*j*, their distance with respect to descriptor—*k* is defined as:

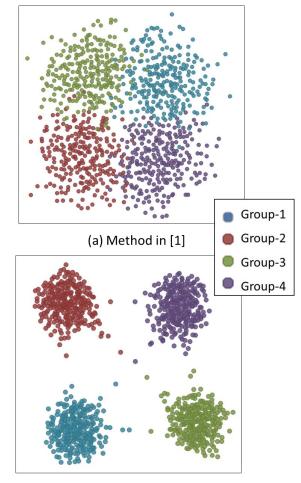
$$D_{k}(G_{k}^{i}, G_{k}^{j}) = w_{eig}\left[D_{k}^{eig}(G_{k}^{i}, G_{k}^{j})\right] + w_{adj}\left[D_{k}^{adj}(G_{k}^{i}, G_{k}^{j})\right]$$
[Koutra et al. 2011] structural information
using the graph eigenvalues λ
$$D_{k}^{eig}(G_{k}^{i}, G_{k}^{j}) = \sum_{h=1}^{h_{max}} (\lambda_{k}^{i,h} - \lambda_{k}^{j,h})^{2}$$

$$D_{k}^{adj}(G_{k}^{i}, G_{k}^{j}) = \sum_{h=1}^{|M_{k}^{i} - M_{k}^{j}|}$$

Overview

- Problem formulation
- Proposed method
- Experimental results
- Conclusions




Experimental results (1/2)

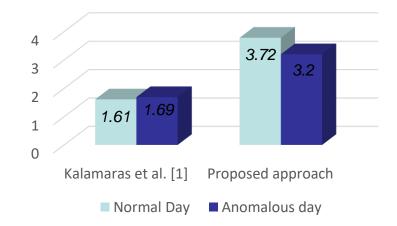
• Simulation of different behavioral groups:

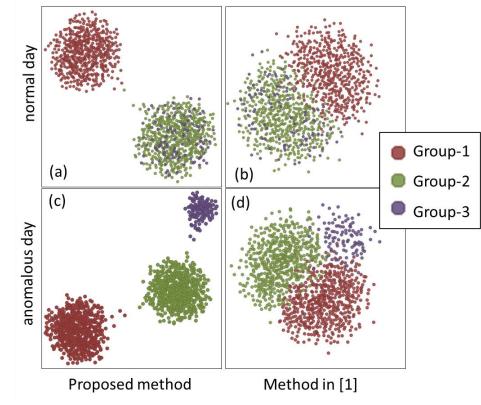
Group ID	Short description
Group-1	250 users with normal SMS, and normal Call behaviour
Group-2	250 users with high SMS, and normal Call behaviour
Group-3	250 users with normal SMS, and high Call behaviour
Group-4	250 users with high SMS, and high Call behaviour

Dunn Index

(b) Proposed method

[1] Kalamaras et al., "A multi-objective clustering approach for the detection of abnormal behaviors in mobile networks," ICCW 2015




Experimental results (2/2)

- Simulation of different behavioral groups for 7 days
- First 6 days: normal behavior, 7th day: anomalous group emerges

Group ID	Short description
Group-1	500 users with normal SMS, and normal Call behaviour
Group-2	500 users with high SMS, and normal Call behaviour
Group-3	100 users (anomalous users active in only the last day of the simulation) with anomalous SMS behaviour, and normal Call behaviour

Dunn Index

- Problem formulation
- Proposed method
- Experimental results
- Conclusions

Conclusions

- Proposed a method of behavioral analytics for securing mobile networks
- Extension of previous approach \rightarrow using graph descriptors
- Advantages:
 - 1. No feature engineering \rightarrow scenario agnostic
 - 2. Can be used for **clustering** of entities based on their behavioral characteristics
 - 3. Graph nodes do not need to represent network entities, e.g. they can represent timestamps, slices etc. → generic
- Future work:
 - Apply anomaly detection to extract an anomaly label for each mobile device
 - Further 5G network simulations

Centre of Research & Technology - Hellas Information Technologies Institute 6th km Xarilaou - Thermi, 57001, Thessaloniki, Greece