

Admission and Congestion Control for 5G Network Slicing IEEE Conference on Standards for Communications and Networking 2018

B. Han¹, A. De Demenico², G. Dandachi², A. Drosou³, D. Tzovaras³, R. Querio⁴, F. Moggio⁴, Ö. Bulakci⁵, and H. D. Schotten¹

 $^1{\rm TU}$ Kaiserslautern, Germany; $^2{\rm CEA}$ LETI, France; $^3{\rm CERTH},$ Greece $^4{\rm TIM},$ Italy; $^5{\rm Huawei}$ GRC, Germany

30. October 2018

 Introduction
 5G Inter-slice M&O
 Proposed Solutions
 Conclusion

 00
 00
 00000
 0

Outline

- 2 5G Inter-slice Management & Orchestration
- 3 Proposed Solutions
- 4 Conclusion

Introduction		
•0		

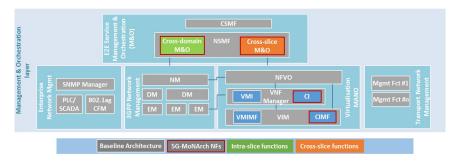
Introduction Slice as a Service (SlaaS)

Network Slicing

- Logically isolated slices of radio/infrastructural/virtual resources
- Can be leased to tenants such as MNVOs & service providers
- Tenant issuing request \Rightarrow inter-slice M&O decides:
 - denial: tenant reissues / MNO reconsiders after a delay
 - \blacksquare admission: slice created \Rightarrow maintained \Rightarrow terminated

Challenges for cross-slice M&O in SlaaS

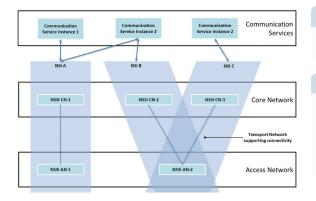
- Heterogeneous & flexible QoS requirement
- Cross-slice optimization
- Non-stationary dynamics of service demand
- Integration with the (pre-)standardized 5G network architecture(s)


Intelligent slice admission control:

- Q-learning (Bega, 2017)
- big data analytics (Raza, 2018)
- neural networks (Raza, 2018)
- heuristic optimization (Jiang, 2016)
- game theory (Caballer, 2018)
- Hardware testbed demonstrations (Zanzi, 2018)
- Initial architectural frameworks (Samdanis, 2016; Nikaein, 2017)

The 5G MoNArch Network M&O Layer

- ETSI/3GPP/Non-3GPP compatible
- E2E Service M&O sublayer
- Service requirements $\stackrel{CSMF}{\longrightarrow}$ network requirements $\stackrel{CDMO}{\longrightarrow}$ slice template $\stackrel{CDMO}{\longrightarrow}$ slice blueprint (with NFs, connectivity, topology, config., etc.) $\stackrel{CSMO}{\longrightarrow}$ slice admission decision



TECHNISCHE UNIVERSITÄT KAISERSLAUTERN WICON

Proposed Solutions

Conclusio O

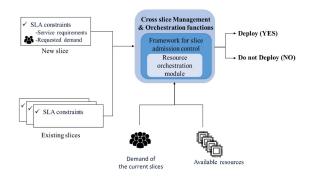
Cross-Slice Orchestration with Shared NF

NS sharing scenarios

- NSI sharing among CSs
- NSSI sharing among NSIs

Use cases

- NS allocation reusing NSI
- NS creation reusing NSSI
- Req. update when NSI is shared among CSs
- Req. update when NSSI shared among NSIs


troduction 5G Inter-slice 0 00

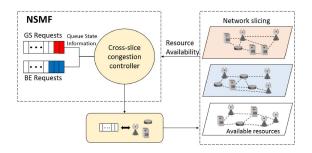
M&O Proposed Solutions

s Conclus

Frameworks

Slice Admission Control Framework

- Available physical and virtual resources
- Remaining capability
- Constrained by SLAs
- Multiple (adversarial) KPIs
- MOO methods to produce a set of Pareto-optimums
- MNO selects from several trade-offs
- Optimize resource utilization
- Running in cross-slice M&O

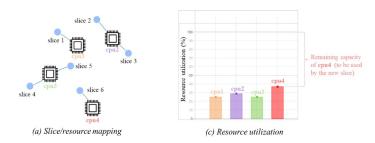

troduction 5G Inter-s

ce M&O Proposed OOOOO

Proposed Solutions Cond

Frameworks

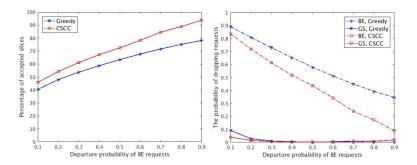
Slice Congestion Control Framework


- Slices may have different priorities and elasticity levels
- Downscaling Best Effort slices to admit more Guaranteed Service slices
- Predict the impact from resource availability, slice requirements & queue state
- Running as an additional function on the top of admission control framework at the orchestrator level

	Proposed Solutions	
	00000	

Implementations

Slice Admission Control

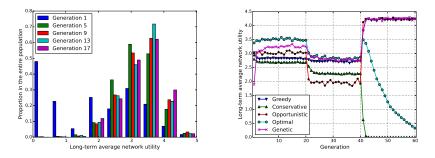

(b) Resource orchestration results

	Proposed Solutions	
	00000	

Implementations

Q-Learning Assisted Cross-Slice Congestion Control

See "Optimal Cross Slice Orchestration for 5G Mobile Services", IEEE VTC 2018 Fall, Chicago, USA, August 2018.


	Proposed Solutions	
	00000	

Implementations

Genetic Slice Admission Strategy Optimizer

Reinforced learning methods need...

- Good training dataset for better initialization
- Robustness against non-stationary service requirements

See "Slice as an Evolutionary Service: Genetic Optimization for Inter-Slice Resource Management in 5G Networks", in IEEE Access, vol. 6, pp. 33137-33147, 2018.

Conclusion

- 5G MoNArch defines a new M&O layer
 - ETSI/3GPP7Non-3GPP compatible
 - with a novel E2E Service M&O sublayer
- Cross-slice management with admission & congestion control for efficient utilization and high utility
- For more details about...
 - cross-slice orchestration
 - slice admission control
 - slice congestion control
 - genetic slice admission

please contact...

- TIM
- CERTH
- CEA LETI
- TUKL

 Introduction
 5G Inter-slice M&O
 Proposed Solutions
 Conclusion

 00
 00
 00000
 0

Acknowledgment

H2020-ICT-2016-2 5G Mobile Network Architechture

for diverse services, use cases, and applications in 5G and beyond

Thank you!