Admission and Congestion Control for 5G Network Slicing
IEEE Conference on Standards for Communications and Networking 2018

B. Han¹, A. De Demenico², G. Dandachi², A. Drosou³, D. Tzovaras³, R. Querio⁴, F. Moggio⁴, Ö. Bulakci⁵, and H. D. Schotten¹

¹TU Kaiserslautern, Germany; ²CEA LETI, France; ³CERTH, Greece
⁴TIM, Italy; ⁵Huawei GRC, Germany

30. October 2018
Outline

1. Introduction

2. 5G Inter-slice Management & Orchestration

3. Proposed Solutions

4. Conclusion
Introduction

Slice as a Service (SlaaS)

Network Slicing

- Logically isolated slices of radio/infrastructural/virtual resources
- Can be leased to tenants such as MNVOs & service providers
- Tenant issuing request \Rightarrow inter-slice M&O decides:
 - denial: tenant reissues / MNO reconsiders after a delay
 - admission: slice created \Rightarrow maintained \Rightarrow terminated

Challenges for cross-slice M&O in SlaaS

- Heterogeneous & flexible QoS requirement
- Cross-slice optimization
- Non-stationary dynamics of service demand
- Integration with the (pre-)standardized 5G network architecture(s)
Introduction

State of the Art

- Intelligent slice admission control:
 - Q-learning (Bega, 2017)
 - big data analytics (Raza, 2018)
 - neural networks (Raza, 2018)
 - heuristic optimization (Jiang, 2016)
 - game theory (Caballer, 2018)

- Hardware testbed demonstrations (Zanzi, 2018)

- Initial architectural frameworks (Samdanis, 2016; Nikaein, 2017)
The 5G MoNArch Network M&O Layer

- ETSI/3GPP/Non-3GPP compatible
- E2E Service M&O sublayer
- Service requirements \xrightarrow{CSMF} network requirements \xrightarrow{CDMO} slice template \xrightarrow{CDMO} slice blueprint (with NFs, connectivity, topology, config., etc.) \xrightarrow{CSMO} slice admission decision
Cross-Slice Orchestration with Shared NF

NS sharing scenarios
- NSI sharing among CSs
- NSSI sharing among NSIs

Use cases
- NS allocation reusing NSI
- NS creation reusing NSSI
- Req. update when NSI is shared among CSs
- Req. update when NSSI shared among NSIs
Frameworks

Slice Admission Control Framework

- Available physical and virtual resources
- Remaining capability
- Constrained by SLAs
- Multiple (adversarial) KPIs
- MOO methods to produce a set of Pareto-optimums
- MNO selects from several trade-offs
- Optimize resource utilization
- Running in cross-slice M&O
Frameworks
Slice Congestion Control Framework

- Slices may have different priorities and elasticity levels
- Downscaling Best Effort slices to admit more Guaranteed Service slices
- Predict the impact from resource availability, slice requirements & queue state
- Running as an additional function on the top of admission control framework at the orchestrator level
Implementations
Slice Admission Control

(a) Slice/resource mapping

(c) Resource utilization

(b) Resource orchestration results
Implementations

Q-Learning Assisted Cross-Slice Congestion Control

See “Optimal Cross Slice Orchestration for 5G Mobile Services”, IEEE VTC 2018 Fall, Chicago, USA, August 2018.
Implementations

Genetic Slice Admission Strategy Optimizer

Reinforced learning methods need...

- Good training dataset for better initialization
- Robustness against non-stationary service requirements

Conclusion

- 5G MoNArch defines a new M&O layer
 - ETSI/3GPP7Non-3GPP compatible
 - with a novel E2E Service M&O sublayer

- Cross-slice management with admission & congestion control for efficient utilization and high utility

- For more details about...
 - cross-slice orchestration
 - slice admission control
 - slice congestion control
 - genetic slice admission

please contact...

- TIM
- CERTH
- CEA LETI
- TUKL
Acknowledgment

H2020-ICT-2016-2
5G Mobile Network Architecture
for diverse services, use cases, and applications in 5G and beyond
Thank you!